Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 09 2022 10:40:45
%S 0,1,5,20,90,499,3395,27474,256984,2720169,32080501,416574212,
%T 5900292266,90461885331,1491788697451,26318520300986,494449968500832,
%U 9852544385880961,207497251731808341,4604297325494524516,107348917822006139114,2623224641748615607715,67035139167875735937219
%N a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k-1)!.
%F Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) * (Ei(x) - log(x) - gamma).
%F From _Vaclav Kotesovec_, Mar 06 2022: (Start)
%F Recurrence: n*(n^3 - 12*n^2 + 46*n - 50)*a(n) = (2*n^5 - 24*n^4 + 95*n^3 - 123*n^2 + 37*n - 2)*a(n-1) - (n^6 - 12*n^5 + 51*n^4 - 95*n^3 + 121*n^2 - 139*n + 74)*a(n-2) + (n-2)*(2*n^5 - 27*n^4 + 140*n^3 - 344*n^2 + 409*n - 173)*a(n-3) - (n-3)^2*(n-2)*(n^3 - 9*n^2 + 25*n - 15)*a(n-4).
%F a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n - 3/4) / sqrt(2). (End)
%t Table[Sum[Binomial[n, k]^2 (n - k - 1)!, {k, 0, n - 1}], {n, 0, 22}]
%t nmax = 22; Assuming[x > 0, CoefficientList[Series[BesselI[0, 2 Sqrt[x]] (ExpIntegralEi[x] - Log[x] - EulerGamma), {x, 0, nmax}], x]] Range[0, nmax]!^2
%o (PARI) a(n) = sum(k=0, n-1, binomial(n,k)^2 * (n-k-1)!); \\ _Michel Marcus_, Mar 06 2022
%Y Cf. A002104, A002720, A352150.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Mar 06 2022