login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352149
a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k-1)!.
1
0, 1, 5, 20, 90, 499, 3395, 27474, 256984, 2720169, 32080501, 416574212, 5900292266, 90461885331, 1491788697451, 26318520300986, 494449968500832, 9852544385880961, 207497251731808341, 4604297325494524516, 107348917822006139114, 2623224641748615607715, 67035139167875735937219
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) * (Ei(x) - log(x) - gamma).
From Vaclav Kotesovec, Mar 06 2022: (Start)
Recurrence: n*(n^3 - 12*n^2 + 46*n - 50)*a(n) = (2*n^5 - 24*n^4 + 95*n^3 - 123*n^2 + 37*n - 2)*a(n-1) - (n^6 - 12*n^5 + 51*n^4 - 95*n^3 + 121*n^2 - 139*n + 74)*a(n-2) + (n-2)*(2*n^5 - 27*n^4 + 140*n^3 - 344*n^2 + 409*n - 173)*a(n-3) - (n-3)^2*(n-2)*(n^3 - 9*n^2 + 25*n - 15)*a(n-4).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n - 3/4) / sqrt(2). (End)
MATHEMATICA
Table[Sum[Binomial[n, k]^2 (n - k - 1)!, {k, 0, n - 1}], {n, 0, 22}]
nmax = 22; Assuming[x > 0, CoefficientList[Series[BesselI[0, 2 Sqrt[x]] (ExpIntegralEi[x] - Log[x] - EulerGamma), {x, 0, nmax}], x]] Range[0, nmax]!^2
PROG
(PARI) a(n) = sum(k=0, n-1, binomial(n, k)^2 * (n-k-1)!); \\ Michel Marcus, Mar 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 06 2022
STATUS
approved