login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352106
Numbers whose binary and maximal tribonacci representations are both palindromic.
0
0, 1, 3, 5, 7, 27, 51, 325, 2193, 3735, 23709, 35889, 53835, 589833, 1294265, 17291201, 80719769, 1274288105, 23157444917, 23635236877, 230684552043, 1218891196337, 1722894010643, 2544113575977, 93096801594005, 175482093541881, 256924005422487, 372295593308821
OFFSET
1,3
EXAMPLE
The first 5 terms are:
n a(n) A007088(a(n)) A352103(a(n))
- ---- ------------- -------------
1 0 0 0
2 1 1 1
3 3 11 11
4 5 101 101
5 7 111 111
6 27 11011 11111
7 51 110011 111111
8 325 101000101 111111111
9 2193 100010010001 1001101011001
10 3735 111010010111 1111111111111
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTribPalQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Join[{0}, Select[Range[1, 10^5, 2], PalindromeQ[IntegerDigits[#, 2]] && lazyTribPalQ[#] &]]
CROSSREFS
Intersection of A006995 and A352105.
Similar sequences: A095309, A331193, A331894, A351713, A351718, A352088.
Sequence in context: A126669 A126668 A083518 * A061944 A288924 A093574
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 05 2022
STATUS
approved