OFFSET
1,6
COMMENTS
For n >=6, the cyclic edge connectivity of K_n is 3*(n-3), so a(n) is the number of cyclic edge cuts of that size in K_n.
LINKS
Eric Weisstein's World of Mathematics, Complete Graph
Eric Weisstein's World of Mathematics, Cyclic Edge Connectivity
Eric W. Weisstein, Minimum cyclic edge cuts for K_n
FORMULA
a(n) = binomial(n,3) = A000292(n-2,3) for n >= 7. - Andrew Howroyd, Jan 28 2023
MATHEMATICA
Table[Piecewise[{{0, n < 6}, {10, n == 6}}, Binomial[n, 3]], {n, 20}] (* Eric W. Weisstein, Nov 23 2024 *)
CoefficientList[Series[x^5 (10 - 5 x - 24 x^2 + 30 x^3 - 10 x^4)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 23 2024 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Feb 22 2022
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 28 2023
STATUS
approved