login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351793
Expansion of e.g.f. 1/(1 - x*exp(-4*x)).
1
1, 1, -6, 6, 248, -2120, -12144, 458416, -2194560, -102238848, 2116494080, 12999644416, -1291721856000, 14270887521280, 650218659514368, -24515781088389120, -89087389799317504, 27917287109308284928, -556978307357438705664, -23150337968775391281152
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (-4 * (n-k))^k/k!.
a(0) = 1 and a(n) = n * Sum_{k=0..n-1} (-4)^(n-1-k) * binomial(n-1,k) * a(k) for n > 0.
MATHEMATICA
a[0] = 1; a[n_] := n!*Sum[(-4*(n - k))^k/k!, {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 19 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(-4*x))))
(PARI) a(n) = n!*sum(k=0, n, (-4*(n-k))^k/k!);
(PARI) a(n) = if(n==0, 1, n*sum(k=0, n-1, (-4)^(n-1-k)*binomial(n-1, k)*a(k)));
CROSSREFS
Column k=4 of A351791.
Cf. A336952.
Sequence in context: A123190 A244956 A239532 * A370711 A165641 A213149
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 19 2022
STATUS
approved