login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351785
Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) + d(k)).
4
0, 1, 1, 2, 4, 2, 3, 3, 3, 3, 4, 6, 1, 6, 4, 5, 5, 4, 4, 5, 5, 6, 16, 6, 5, 6, 16, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 18, 5, 18, 16, 18, 5, 18, 8, 9, 9, 16, 16, 17, 17, 16, 16, 9, 9, 10, 12, 10, 17, 18, 20, 18, 17, 10, 12, 10, 11, 11, 11, 11, 19, 19, 19, 19, 11, 11, 11, 11
OFFSET
0,4
COMMENTS
The function d is a bijection from the nonnegative integers to the nonnegative dyadic rationals satisfying d(A000695(n)) = n for any n >= 0.
FORMULA
T(A000695(n), A000695(k)) = A000695(n + k).
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = n.
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1| 1 4 3 6 5 16 7 18 9 12 11 14 13 24 15 26
2| 2 3 1 4 6 7 5 16 10 11 9 12 14 15 13 24
3| 3 6 4 5 7 18 16 17 11 14 12 13 15 26 24 25
4| 4 5 6 7 16 17 18 19 12 13 14 15 24 25 26 27
5| 5 16 7 18 17 20 19 22 13 24 15 26 25 28 27 30
6| 6 7 5 16 18 19 17 20 14 15 13 24 26 27 25 28
7| 7 18 16 17 19 22 20 21 15 26 24 25 27 30 28 29
8| 8 9 10 11 12 13 14 15 2 3 1 4 6 7 5 16
9| 9 12 11 14 13 24 15 26 3 6 4 5 7 18 16 17
10| 10 11 9 12 14 15 13 24 1 4 3 6 5 16 7 18
PROG
(PARI) d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v }
t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v }
T(n, k) = t(d(n)+d(k))
CROSSREFS
Cf. A000695, A130472, A351705, A351706, A351786 (multiplication).
Sequence in context: A087229 A351432 A320156 * A054240 A330312 A331810
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Feb 19 2022
STATUS
approved