OFFSET
0,472
COMMENTS
Multiset transform of the binary sequence b(n)=1,1,0,0,0,1,0,0,0,0,1,0,... with g.f. 1 + x + x^5 + x^10 + x^25, where b(.) is the Inverse Euler Transform of A001299.
LINKS
FORMULA
EXAMPLE
T(30,6)=2 counts the partitions 5+5+5+5+5+5 = 1+1+1+1+1+25.
The triangle starts at row n=0 and has columns k=0..n:
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 1 2 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, i-1)+
(p-> `if`(p>n, 0, expand(x*b(n-p, i))))([1, 5, 10, 25][i]))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 4)):
seq(T(n), n=0..15); # Alois P. Heinz, Feb 17 2022
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, i - 1] +
Function[p, If[p > n, 0, Expand[x*b[n-p, i]]]][{1, 5, 10, 25}[[i]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 4]];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
CROSSREFS
AUTHOR
R. J. Mathar, Feb 17 2022
STATUS
approved