login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351725
Table T(n,k) read by rows: number of partitions of n into k parts of size 1, 5, 10 or 25.
4
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
0,472
COMMENTS
Multiset transform of the binary sequence b(n)=1,1,0,0,0,1,0,0,0,0,1,0,... with g.f. 1 + x + x^5 + x^10 + x^25, where b(.) is the Inverse Euler Transform of A001299.
FORMULA
T(n,0) = 0 if k>0.
T(n,n) = 1.
Sum_{k=0..n} k * T(n,k) = A351740(n). - Alois P. Heinz, Feb 17 2022
EXAMPLE
T(30,6)=2 counts the partitions 5+5+5+5+5+5 = 1+1+1+1+1+25.
The triangle starts at row n=0 and has columns k=0..n:
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 1 2 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, i-1)+
(p-> `if`(p>n, 0, expand(x*b(n-p, i))))([1, 5, 10, 25][i]))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 4)):
seq(T(n), n=0..15); # Alois P. Heinz, Feb 17 2022
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, i - 1] +
Function[p, If[p > n, 0, Expand[x*b[n-p, i]]]][{1, 5, 10, 25}[[i]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 4]];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A001299 (row sums), A351740.
Column k=0 gives A000007.
Main diagonal gives A000012.
T(2n,n) gives A351742.
Sequence in context: A134286 A023531 A320841 * A243148 A089495 A345703
KEYWORD
nonn,easy,look,tabl
AUTHOR
R. J. Mathar, Feb 17 2022
STATUS
approved