The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351641 Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols. 6
 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 8, 12, 4, 1, 0, 1, 17, 28, 22, 5, 1, 0, 1, 26, 81, 68, 35, 6, 1, 0, 1, 45, 177, 251, 135, 51, 7, 1, 0, 1, 76, 410, 704, 610, 236, 70, 8, 1, 0, 1, 121, 906, 2068, 2086, 1266, 378, 92, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Permuting the symbols will not change the structure. Equivalently, T(n,k) is the number of restricted growth strings [s(0), s(1), ..., s(n-1)] where s(0)=0 and s(i) <= 1 + max(prefix) for i >= 1, the maximum value is k and all runs are distinct. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50) FORMULA T(n,k) = A351640(n,k)/k!. EXAMPLE Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 5, 3, 1; 0, 1, 8, 12, 4, 1; 0, 1, 17, 28, 22, 5, 1; 0, 1, 26, 81, 68, 35, 6, 1; 0, 1, 45, 177, 251, 135, 51, 7, 1; ... The T(4,1) = 1 word is 1111. The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222. The T(4,3) = 3 words are 1123, 1223, 1233. The T(4,4) = 1 word is 1234. PROG (PARI) \\ here LahI is A111596 as row polynomials. LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))} S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))} R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]} T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]} { my(A=T(10)); for(n=1, #A, print(A[n])) } CROSSREFS Row sums are A351642. Partial row sums include A000007, A000012, A351018, A351644. Column k=3 is A351643. Cf. A111596, A351637, A351640. Sequence in context: A263339 A244372 A119331 * A291883 A361957 A239145 Adjacent sequences: A351638 A351639 A351640 * A351642 A351643 A351644 KEYWORD nonn,tabl AUTHOR Andrew Howroyd, Feb 15 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 21:52 EST 2024. Contains 370219 sequences. (Running on oeis4.)