login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A003958(sigma(A003961(n))), where A003958 is multiplicative with a(p^e) = (p-1)^e, A003961 multiplicative with a(prime(k)^e) = prime(1+k)^e, and sigma is the sum of divisors function.
5

%I #9 Feb 12 2022 23:47:45

%S 1,1,2,12,1,2,2,4,30,1,6,24,4,2,2,100,4,30,2,12,4,6,8,8,36,4,24,24,1,

%T 2,18,72,12,4,2,360,12,2,8,4,10,4,2,72,30,8,8,200,108,36,8,48,8,24,6,

%U 8,4,1,30,24,16,18,60,1092,4,12,4,48,16,2,36,120,4,12,72,24,12,8,12,100,700,10,16,48,4,2,2,24

%N a(n) = A003958(sigma(A003961(n))), where A003958 is multiplicative with a(p^e) = (p-1)^e, A003961 multiplicative with a(prime(k)^e) = prime(1+k)^e, and sigma is the sum of divisors function.

%H Antti Karttunen, <a href="/A351456/b351456.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F Multiplicative with a(p^e) = A003958(1 + q + ... + q^e), where q = nextPrime(p) = A151800(p).

%F a(n) = A003958(A003973(n)) = A351442(A003961(n)) = A003958(A000203(A003961(n))).

%F a(n) = A351457(n) + A339905(n).

%o (PARI)

%o A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A351456(n) = A003958(sigma(A003961(n)));

%Y Cf. A000203, A003958, A003961, A003973, A151800, A339905, A351442, A351457.

%Y Cf. also A326042.

%K nonn,mult

%O 1,3

%A _Antti Karttunen_, Feb 12 2022