login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351408
Number of divisors of n that are either trivial or are nonsquares with a square divisor > 1.
1
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 2, 1, 1, 1, 7
OFFSET
1,8
FORMULA
a(n) = Sum_{d|n} [c(d) = mu(d)^2], where [ ] is the Iverson bracket and c is the characteristic function of squares (A010052).
a(n) = A048105(n) - A046951(n) + 2. - Amiram Eldar, Oct 06 2023
EXAMPLE
a(96) = 7; 96 has the trivial divisor (=1), and the 6 divisors 8,12,24,32,48,96 which all have a square divisor > 1 but are not themselves square.
MATHEMATICA
a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ (e + 1) - 2^Length[e] - Times @@ (1 + Floor[e/2]) + 2]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n), e = f[, 2], d = numdiv(f), nu = omega(f)); d - 2^nu - vecprod(apply(x -> x\2 + 1, e)) + 2; } \\ Amiram Eldar, Oct 06 2023
CROSSREFS
Sequence in context: A347708 A050330 A339890 * A205788 A214054 A330739
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Feb 11 2022
STATUS
approved