|
|
A351325
|
|
Numbers k with exactly one solution to the equation A = B*k, where A and B are antipalindromic numbers (members of A035928).
|
|
0
|
|
|
5, 21, 26, 69, 85, 89, 92, 102, 106, 116, 219, 221, 233, 239, 245, 249, 261, 269, 276, 284, 291, 301, 306, 319, 323, 324, 333, 341, 344, 356, 361, 364, 369, 426, 434, 460, 468, 488, 843, 869, 879, 919, 925, 971, 981, 997, 1015, 1042, 1044, 1046, 1052, 1053
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..52.
James Haoyu Bai, Joseph Meleshko, Samin Riasat, and Jeffrey Shallit, Quotients of Palindromic and Antipalindromic Numbers, arXiv:2202.13694 [math.NT], 2022.
|
|
EXAMPLE
|
For k = 233 we have A = 8532926, B = 36622, which is the only solution in antipalindromes.
|
|
CROSSREFS
|
Cf. A002450, A035928, A351172, A351176.
Sequence in context: A176300 A042319 A302305 * A303965 A304351 A305914
Adjacent sequences: A351322 A351323 A351324 * A351326 A351327 A351328
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Jeffrey Shallit, Feb 07 2022
|
|
STATUS
|
approved
|
|
|
|