OFFSET
1,1
COMMENTS
a(n) is the least prime p such that p*(p-1) or p*(p+1) is the sum of a sequence where each term is either prime(i)*(prime(i)-1) or prime(i)*(prime(i)+1), for i from n to some j.
LINKS
Robert Israel, Table of n, a(n) for n = 1..2400
EXAMPLE
a(3) = 13 because prime(3) = 5, the next two primes are 7 and 11, and 5*6 + 7*6 + 11*10 = 182 = 13*14.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6, 2)]):
R:= convert(map(p -> (p*(p-1), p*(p+1)), P), set):
f:= proc(n) local S, T, SR, i, s;
S:= {P[n]*(P[n]-1), P[n]*(P[n]+1)};
for i from n+1 do
T:= [P[i]*(P[i]-1), P[i]*(P[i]+1)];
S:= map(s -> (s+T[1], s+T[2]), S);
SR:= S intersect R;
if SR <> {} then
s:= (sqrt(1+4*min(SR))-1)/2;
if isprime(s) then return s else return s+1 fi
fi
od
end proc:
map(f, [$1..100]);
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 18 2022
STATUS
approved