login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351090
Lexicographically earliest infinite sequence such that a(i) = a(j) => A351091(i) = A351091(j) and A351092(i) = A351092(j), for all i, j >= 1.
6
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42, 11, 43, 22, 44, 6, 45, 23
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A351091(n), A351092(n)], or equally, of the ordered pair [A351093(n), A351094(n)].
For all i, j: A003602(i) = A003602(j) => a(i) = a(j) => A000593(i) = A000593(j).
LINKS
EXAMPLE
Consider two odd semiprimes, 689 and 697. The divisors of 689 are 1, 13, 53, 689, and the divisors of 697 are 1, 17, 41, 697. Applying A019565(A289813(x)) to the former gives [2, 30, 7, 105], while with the latter it gives [2, 5, 105, 42], and the product of both sequences is 44100. Applying A019565(A289814(x)) to the former gives [1, 1, 30, 286], while with the latter it gives [1, 6, 2, 715]. Product of both sequences is 8580. Therefore, because A351091(689) = A351091(697) and A351092(689) = A351092(697), also a(689) = a(697).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); }; \\ From A289813
A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); }; \\ From A289814
A351091(n) = { my(m=1); fordiv(n>>valuation(n, 2), d, m *= A019565(A289813(d))); (m); };
A351092(n) = { my(m=1); fordiv(n>>valuation(n, 2), d, m *= A019565(A289814(d))); (m); };
Aux351090(n) = [A351091(n), A351092(n)];
v351090 = rgs_transform(vector(up_to, n, Aux351090(n)));
A351090(n) = v351090[n];
CROSSREFS
Differs from A003602 for the first time at n=697, where a(697) = 345 while A003602(697) = 349.
Cf. also A293226, A351030.
Sequence in context: A366881 A366891 A003602 * A366893 A365388 A366380
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jan 31 2022
STATUS
approved