The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350562 For n >= 2, if there exists an m < n such that a(m) = a(n), take the largest such m and set a(n+1) = (n-m+1)*a(n); otherwise a(n+1) = 1. Start with a(1)=1 and a(2)=0. 0
 1, 0, 1, 3, 1, 3, 9, 1, 4, 1, 3, 18, 1, 4, 24, 1, 4, 16, 1, 4, 16, 64, 1, 5, 1, 3, 48, 1, 4, 40, 1, 4, 16, 208, 1, 5, 65, 1, 4, 32, 1, 4, 16, 176, 1, 5, 55, 1, 4, 32, 352, 1, 5, 40, 1000, 1, 5, 25, 1, 4, 48, 1680, 1, 5, 40, 480, 1, 5, 25, 300, 1, 5, 25, 125, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS A type of multiplicative Van Eck sequence. LINKS Table of n, a(n) for n=1..75. MATHEMATICA f[1]=1; f[n_]:=0; f2[n_]:=0; a[n_]:=Block[{q=f2[x]}, If[q!=0, s[n]=((n-1-q)*(x))+x, s[n]=1]]; s[1]=1; s[2]=0; x=0; Do[x=a[n]; f2[x]=f[x]; f[x]=n, {n, 3, 100000}]; data=Table[s[n], {n, 1, 100000}] PROG (PARI) findm(list, n) = {forstep (m=n-1, 1, -1, if (list[m] == list[n], return(m))); return(0); } lista(nn) = {my(list = List([1, 0])); for (n=3, nn, my(m=findm(list, n-1)); if (m, listput(list, (n-m)*list[n-1]), listput(list, 1)); ); Vec(list); } \\ Michel Marcus, Jan 17 2022 (Python) from itertools import count, islice def A350562_gen(): # generator of terms bdict = {1:1} yield 1 b = 0 for n in count(3): yield b c = (n-bdict[b])*b if b in bdict else 1 bdict[b], b = n-1, c A350562_list = list(islice(A350562_gen(), 30)) # Chai Wah Wu, Feb 11 2022 CROSSREFS Cf. A181391, A350228. Sequence in context: A119265 A143453 A248830 * A164308 A082511 A265307 Adjacent sequences: A350559 A350560 A350561 * A350563 A350564 A350565 KEYWORD nonn AUTHOR Jasmine Miller, Jan 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 02:39 EST 2024. Contains 370335 sequences. (Running on oeis4.)