%I #10 Feb 20 2022 23:08:08
%S 0,1,0,2,1,0,3,5,8,4,1,0,4,1,0,5,8,4,1,0,6,3,5,8,4,1,0,7,2,1,0,8,4,1,
%T 0,9,14,7,2,1,0,10,3,5,8,4,1,0,11,17,26,13,4,1,0,12,6,3,5,8,4,1,0,13,
%U 4,1,0,14,7,2,1,0,15,23,35,53,80,40,13,4,1,0
%N Irregular triangle T(n,k) read by rows in which row n lists the iterates of the A350515 map from n to 0.
%H Emre Yolcu, Scott Aaronson and Marijn J. H. Heule, <a href="https://arxiv.org/abs/2105.14697">An Automated Approach to the Collatz Conjecture</a>, arXiv:2105.14697 [cs.LO], 2021, pp. 21-25.
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F T(n,0) = n; T(n,k) = A350515(T(n,k-1)), where n >= 0 and k >= 1.
%F T(n,k) = (A350279(n+1,k+1)-1)/2, where n >= 0 and k >= 0.
%e Written as an irregular triangle, the sequence begins:
%e n\k 0 1 2 3 4 5 6
%e -------------------------------
%e 0: 0
%e 1: 1 0
%e 2: 2 1 0
%e 3: 3 5 8 4 1 0
%e 4: 4 1 0
%e 5: 5 8 4 1 0
%e 6: 6 3 5 8 4 1 0
%e 7: 7 2 1 0
%e 8: 8 4 1 0
%e 9: 9 14 7 2 1 0
%e 10: 10 3 5 8 4 1 0
%e 11: 11 17 26 13 4 1 0
%e ...
%t A350515[n_]:=If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]];
%t nrows=20;Table[NestWhileList[A350515,n,#>0&],{n,0, nrows-1}]
%Y Cf. A070165, A349407, A350279, A350515.
%K nonn,easy,tabf
%O 0,4
%A _Paolo Xausa_, Jan 04 2022