OFFSET
1,6
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies:
(1) A(x) = A(x^4 - x^6)/x^3.
(2) R(x^3*A(x)) = x^4 - x^6, where R(A(x)) = x.
(3) A(x) = Product_{n>=0} F(n), where F(0) = x, F(1) = 1-x^2, and F(n+1) = 1 - (1 - F(n))^4 * F(n)^2 for n > 0.
EXAMPLE
G.f.: A(x) = x - x^3 - x^9 + 3*x^11 - 3*x^13 + x^15 - x^33 + 9*x^35 - 36*x^37 + 84*x^39 - 123*x^41 + 93*x^43 + 81*x^45 + ...
The series reversion is here denoted R(x) so that R(A(x)) = x where
R(x) = x + x^3 + 3*x^5 + 12*x^7 + 56*x^9 + 282*x^11 + 1494*x^13 + 8207*x^15 + 46332*x^17 + ... + A350482(n)*x^(2*n-1) + ...
and which by definition also satisfies R(x^3*A(x)) = x^4 - x^6.
GENERATING METHOD.
One may generate the g.f. A(x) using the following method.
Define F(n), a polynomial in x of order 2*6^(n-1), by the following recurrence:
F(0) = x,
F(1) = (1 - x^2),
F(2) = (1 - x^8 * (1-x^2)^2),
F(3) = (1 - x^32 * (1-x^2)^8 * F(2)^2),
F(4) = (1 - x^128 * (1-x^2)^32 * F(2)^8 * F(3)^2),
F(5) = (1 - x^512 * (1-x^2)^128 * F(2)^32 * F(3)^8 * F(4)^2),
...
F(n+1) = 1 - (1 - F(n))^4 * F(n)^2
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
A(x) = x * (1-x^2) * (1 - x^8*(1-x^2)^2) * (1 - x^32*(1-x^2)^8*(1 - x^8*(1-x^2)^2)^2) * (1 - x^128*(1-x^2)^32*(1 - x^8*(1-x^2)^2)^8*(1 - x^32*(1-x^2)^8*(1 - x^8*(1-x^2)^2)^2)^2) * ...
SPECIFIC VALUES.
The infinite product formula allows us to evaluate the function A(x) at certain x rather quickly.
A(1/2) = (1/2) * (3/2^2) * (4087/2^12) * (4722366482760053097487/2^72) * ... = 0.37417602538194148451978837081...
A(2/3) = (2/3) * (5/3^2) * (525041/3^12) * ... = 0.36591009281837971406458290316...
A(1/3) = (1/3) * (8/3^2) * (531377/3^12) * ... = 0.29626061413597559076118753086...
The first relative maximum value of A(x) is given by
A(0.5712201306311149010325669...) = 0.3828554098922613628968808...
PROG
(PARI) {a(n) = my(A, R=[1, 0]); for(i=1, n, R=concat(R, 0);
R[#R] = -polcoeff( x^4*(1 - x^2) - subst(x*Ser(R), x, x^3 * serreverse(x*Ser(R))), #R+3) );
A=Vec(serreverse(x*Ser(R))); H=A; A[n]}
for(n=1, 70, print1(a(2*n-1), ", "))
(PARI) /* Using Infinite Product Formula */
N = 400; \\ set limit on order of polynomials to be 2 times desired number of terms
{F(n) = my(G=x); if(n==0, G=x, if(n==1, G = (1-x^2), G = 1 - (1 - F(n-1))^4 * F(n-1)^2 +x^2*O(x^N) )); G}
{a(n) = my(A = prod(k=0, #binary(n), F(k) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 70, print1(a(2*n-1), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 01 2022
STATUS
approved