login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350221
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor((n/k)^2).
3
1, 3, 8, 12, 21, 29, 40, 52, 67, 83, 100, 116, 140, 160, 185, 210, 237, 264, 298, 327, 363, 397, 435, 472, 514, 557, 602, 644, 690, 741, 791, 837, 897, 950, 1009, 1063, 1126, 1185, 1253, 1313, 1381, 1450, 1521, 1593, 1667, 1739, 1820, 1894, 1973, 2054, 2140
OFFSET
1,2
FORMULA
a(n) = A309081(n^2).
MATHEMATICA
a[n_] := Sum[(-1)^(k + 1)*Floor[(n/k)^2], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 20 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n^2\k^2));
(Python)
def A350221(n): return (m:=n**2)+sum(m//k**2 if k&1 else -(m//k**2) for k in range(2, n+1)) # Chai Wah Wu, Oct 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 20 2021
STATUS
approved