The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350083 a(n) = A006935(n) / ord(2,A006935(n)/2), where ord(a,m) is the multiplicative order of a modulo m. 1
 1, 617, 1305, 9339, 225, 5297, 6985, 1549, 174233, 46549, 93701, 66879, 431087, 593887, 1288921, 446275, 43685, 1205, 3361, 2577225, 1313, 430739, 177301, 8541, 13067, 474525, 561301, 84725, 158873, 725725, 3851, 14019, 128861, 1090301, 2529, 430667, 541673 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS List of (2*k-1) / ord(2,k) where k ranges over the odd numbers such that 2^(2*k-1) == 1 (mod k). LINKS Table of n, a(n) for n=1..37. FORMULA a(n) = (2*A347906(n) - 1) / ord(2,A347906(n)) = (A006935(n) - 1) / A350084(n). EXAMPLE A006935(2) = 161038, so a(2) = (161038 - 1) / ord(2,161038/2) = 617. A006935(3) = 215326, so a(3) = (215326 - 1) / ord(2,215326/2) = 1305. PROG (PARI) list(lim) = my(v=[], d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2, k)))==0, v=concat(v, (2*k-1)/d))); v \\ gives a(n) for A347906(n) <= lim CROSSREFS Cf. A006935, A347906, A350084, A300101, A174590. Sequence in context: A221040 A221503 A275048 * A275739 A108818 A288412 Adjacent sequences: A350080 A350081 A350082 * A350084 A350085 A350086 KEYWORD nonn AUTHOR Jianing Song, Dec 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 06:24 EDT 2024. Contains 371769 sequences. (Running on oeis4.)