login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347906
Numbers k such that 2^(2*k-1) == 1 (mod k).
6
1, 80519, 107663, 1284113, 1510313, 3933023, 4557713, 24849833, 71871113, 80646143, 98058097, 104832833, 106694033, 146987033, 168204191, 188997463, 205428713, 332693873, 333681761, 336327863, 380284847, 533039513, 552913169, 711999113, 725943719, 805031663, 1000519033, 1069441313, 1476327353, 1610020913
OFFSET
1,2
COMMENTS
Odd numbers k such that ord(2,k) divides 2*k-1, where ord(2,k) is the multiplicative order of 2 modulo k.
Numbers k such that 2*k is in A006935. For k > 1, k is a term if and only if 2*k is an even pseudoprime to base 2.
Odd terms in A130421. Complement of A347908 in A130421.
Terms > 1 must be composite, since for odd primes p we have 2^(2*p-1) == 2 (mod p). If k > 1 is a term, then 2*k-1 must also be composite, since ord(2,k) | (2*k-1) and ord(2,k) <= eulerphi(k) <= k-1 < 2*k-1.
If k > 1 is a term, then (2^(2*k-1) - 1)/k is composite. Proof: since 2*k-1 is composite, write 2*k-1 = u*v, u >= v > 1, then (2^(2*k-1) - 1)/k = (2^u - 1)*(2^(u*(v-1)) + ... + 2^u + 1)/k. Since k | 2^(2*k-1) - 1, there exist positive integers a,b such that a*b = k and that a | 2^u - 1 and b | 2^(u*(v-1)) + ... + 2^u + 1. Note that (2^u - 1)/a, (2^(u*(v-1)) + ... + 2^u + 1)/b >= (2^u - 1)/k >= (2^sqrt(2*k-1) - 1)/k > 1, so (2^(2*k-1) - 1)/k is the product of two integers > 1, so it is composite.
2^t - 1 is a term if and only if 2^(t+1) == 3 (mod t) (t = 1, 111481, 465793, ... in A296370).
LINKS
Jianing Song, Table of n, a(n) for n = 1..1319 (contains all terms below 10^15; based on Max Alekseyev's b-file for A006935)
FORMULA
a(n) = A006935(n)/2.
EXAMPLE
80519 is a term since 80519 divides 2^161037 - 1 (the multiplicative order of 2 modulo 80519 is 261, which is a divisor of 161037). Note that 2 * 80519 = 161038 = A006935(2) is the smallest even pseudoprime to base 2.
PROG
(PARI) isA347906(k) = if(k%2 && !isprime(k), Mod(2, k)^(2*k-1)==1, 0)
CROSSREFS
Cf. A347907 (a similar sequence).
Sequence in context: A218248 A102457 A102459 * A329188 A095946 A264805
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 18 2021
STATUS
approved