Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 29 2023 20:31:23
%S 1,2,1,3,1,0,5,2,1,1,7,2,0,-1,-2,11,4,2,2,3,5,13,2,-2,-4,-6,-9,-14,17,
%T 4,2,4,8,14,23,37,23,6,2,0,-4,-12,-26,-49,-86,25,2,-4,-6,-6,-2,10,36,
%U 85,171,29,4,2,6,12,18,20,10,-26,-111,-282
%N Iterated differences of ludic numbers. Array read by antidiagonals, n >= 0, k >= 1: T(0,k) = A003309(k), T(n,k) = T(n-1,k+1)-T(n-1,k) for n > 0.
%H Winston de Greef, <a href="/A350004/b350004.txt">Table of n, a(n) for n = 0..11324</a> (150 antidiagonals)
%F T(n,k) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*A003309(k+j).
%e Array begins:
%e n\k| 1 2 3 4 5 6 7 8 9 10
%e ---+-----------------------------------------------
%e 0 | 1 2 3 5 7 11 13 17 23 25
%e 1 | 1 1 2 2 4 2 4 6 2 4
%e 2 | 0 1 0 2 -2 2 2 -4 2 4
%e 3 | 1 -1 2 -4 4 0 -6 6 2 -8
%e 4 | -2 3 -6 8 -4 -6 12 -4 -10 10
%e 5 | 5 -9 14 -12 -2 18 -16 -6 20 -8
%e 6 | -14 23 -26 10 20 -34 10 26 -28 2
%e 7 | 37 -49 36 10 -54 44 16 -54 30 8
%e 8 | -86 85 -26 -64 98 -28 -70 84 -22 -26
%e 9 | 171 -111 -38 162 -126 -42 154 -106 -4 64
%e 10 | -282 73 200 -288 84 196 -260 102 68 -142
%Y Cf. A003309 (row n = 0), A260723 (row n = 1).
%Y Cf. A095195 (iterated differences of primes), A350001 (iterated differences of lucky numbers).
%K sign,tabl
%O 0,2
%A _Pontus von Brömssen_, Dec 08 2021