login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349835
Expansion of (1 + 4*x)/sqrt(1 - 4*x).
3
1, 6, 14, 44, 150, 532, 1932, 7128, 26598, 100100, 379236, 1444456, 5525884, 21217224, 81719000, 315583920, 1221550470, 4737927780, 18409560180, 71645805000, 279227584020, 1089643989720, 4257130461480, 16649826582480, 65181326593500, 255401021170152
OFFSET
0,2
COMMENTS
Let b(n) = A349834(n)/4^n, {b(n)} = {1, 3/2, 11/8, 23/16, 179/128, 365/256, 1439/1024, ...}. Since A349834(n) >= 4^n, Sum_{n>=0} b(n) is divergent. Let c(n) = a(n)/(-4)^n, {c(n)} = {1, -3/2, 7/8, -11/16, 75/128, -133/256, 483/1024, ...}. Since |c(n)| ~ 2/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((4*n+3)*(2*n-1)) / ((4*n-1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. Note that Sum_{n>=0} b(n)*x^n = sqrt(1 + x)/(1 - x), Sum_{n>=0} c(n)*x^n = (1 - x)/sqrt(1 + x), hence the Cauchy product of Sum_{n>=0} b(n) and Sum_{n>=0} c(n) is 1 + 0 + 0 + .... {b(n)} and {c(n)} serve as an example such that the Cauchy product of a divergent series and a conditionally convergent series can be absolutely convergent.
FORMULA
For n > 0, a(n) = binomial(2*n,n) + 4*binomial(2*(n-1),n-1) = binomial(2*(n-1),n-1) * (8 - 2/n).
a(n) ~ 4^n * (2/sqrt(Pi*n)).
EXAMPLE
a(1) = binomial(0,0) * (8 - 2/1) = 6;
a(2) = binomial(2,1) * (8 - 2/2) = 14;
a(3) = binomial(4,2) * (8 - 2/3) = 44;
a(4) = binomial(6,3) * (8 - 2/4) = 150.
PROG
(PARI) a(n) = if(n, binomial(2*(n-1), n-1) * (8 - 2/n), 1)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Dec 01 2021
STATUS
approved