login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349756
Numbers k such that the odd part of sigma(k) is equal to gcd(sigma(k), A003961(k)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
5
1, 2, 3, 6, 7, 14, 20, 21, 24, 27, 31, 42, 54, 57, 60, 62, 93, 114, 120, 127, 140, 160, 168, 186, 189, 216, 217, 220, 237, 254, 264, 301, 378, 381, 399, 408, 420, 434, 460, 474, 480, 513, 540, 552, 602, 620, 651, 660, 744, 762, 792, 798, 837, 840, 889, 903, 940, 1026, 1080, 1120, 1128, 1140, 1302, 1320, 1380, 1392, 1512
OFFSET
1,2
COMMENTS
Numbers k for which A161942(k) = A342671(k).
From Antti Karttunen, Jul 23 2022: (Start)
Numbers k such that k is a multiple of A350073(k).
For any square s in this sequence, A349162(s) = 1, i.e. sigma(s) divides A003961(s), and also A286385(s). Question: Is 1 the only square in this sequence? (see the conjecture in A350072).
If both x and y are terms and gcd(x, y) = 1, then x*y is also present.
After 2, the only primes present are Mersenne primes, A000668.
(End)
MATHEMATICA
f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; oddpart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := oddpart[(sigma = DivisorSigma[1, n])] == GCD[sigma, s[n]]; Select[Range[1500], q] (* Amiram Eldar, Dec 04 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A355946(n) = { my(s=sigma(n)); !(A003961(n)%((s>>=valuation(s, 2)))); };
isA349756(n) = A355946(n);
CROSSREFS
Positions of 1's in A348992.
Positions where the powers of 2 (A000079) occur in A349162.
Cf. A000203, A003961, A161942, A286385, A342671, A350072, A350073, A355946 (characteristic function).
Cf. A000668, A046528 (subsequences).
Cf. also A348943.
Sequence in context: A018652 A125686 A297413 * A018748 A018258 A378569
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 03 2021
STATUS
approved