login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least v-palindrome in base n.
1

%I #11 Nov 24 2021 16:31:30

%S 175,1280,6,288,10,731,14,93,18,135,22,63,26,291,109,581,34,144,38,24,

%T 51,1145,46,273,50,260,335,63,58,360,62,141,110,513,224,1404,74,140,

%U 294,189,82,224,86,344,105,2410,94,417,98,176,497,56,106,76,60,189,1385,3952,100

%N a(n) is the least v-palindrome in base n.

%C A v-palindrome in base n is a number k that is not palindromic in base n, but for which A338038(k) = A338038(reverse(k) in base n).

%H Michel Marcus, <a href="/A349674/b349674.txt">Table of n, a(n) for n = 2..3000</a>

%H Daniel Tsai, <a href="https://arxiv.org/abs/2010.03151">A recurring pattern in natural numbers of a certain property</a>, arXiv:2010.03151 [math.NT], 2020.

%H Daniel Tsai, <a href="http://math.colgate.edu/~integers/v32/v32.mail.html">A recurring pattern in natural numbers of a certain property</a>, Integers (2021) Vol. 21, Article #A32.

%H Daniel Tsai, <a href="https://arxiv.org/abs/2111.10211">v-palindromes: an analogy to the palindromes</a>, arXiv:2111.10211 [math.HO], 2021. See Table 1 p. 9.

%e a(10) = A338039(1) = 18.

%t s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; a[b_] := Module[{k = b+1, r}, While[!(!Divisible[k, b] && k != (r = IntegerReverse[k,b]) && s[k] == s[IntegerReverse[k, b]]), k++]; k]; Array[a, 100, 2] (* _Amiram Eldar_, Nov 24 2021 *)

%o (PARI) f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038

%o isok(m, b) = my(r=fromdigits(Vecrev(digits(m, b)), b)); (m % b) && (m != r) && (f(r) == f(m));

%o a(n) = my(k=1); while (!isok(k, n), k++); k;

%Y Cf. A338038, A338039.

%K nonn,base

%O 2,1

%A _Michel Marcus_, Nov 24 2021