login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349674
a(n) is the least v-palindrome in base n.
1
175, 1280, 6, 288, 10, 731, 14, 93, 18, 135, 22, 63, 26, 291, 109, 581, 34, 144, 38, 24, 51, 1145, 46, 273, 50, 260, 335, 63, 58, 360, 62, 141, 110, 513, 224, 1404, 74, 140, 294, 189, 82, 224, 86, 344, 105, 2410, 94, 417, 98, 176, 497, 56, 106, 76, 60, 189, 1385, 3952, 100
OFFSET
2,1
COMMENTS
A v-palindrome in base n is a number k that is not palindromic in base n, but for which A338038(k) = A338038(reverse(k) in base n).
LINKS
Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
Daniel Tsai, v-palindromes: an analogy to the palindromes, arXiv:2111.10211 [math.HO], 2021. See Table 1 p. 9.
EXAMPLE
a(10) = A338039(1) = 18.
MATHEMATICA
s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; a[b_] := Module[{k = b+1, r}, While[!(!Divisible[k, b] && k != (r = IntegerReverse[k, b]) && s[k] == s[IntegerReverse[k, b]]), k++]; k]; Array[a, 100, 2] (* Amiram Eldar, Nov 24 2021 *)
PROG
(PARI) f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038
isok(m, b) = my(r=fromdigits(Vecrev(digits(m, b)), b)); (m % b) && (m != r) && (f(r) == f(m));
a(n) = my(k=1); while (!isok(k, n), k++); k;
CROSSREFS
Sequence in context: A186211 A205748 A352109 * A205470 A187420 A186212
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Nov 24 2021
STATUS
approved