|
|
A349674
|
|
a(n) is the least v-palindrome in base n.
|
|
1
|
|
|
175, 1280, 6, 288, 10, 731, 14, 93, 18, 135, 22, 63, 26, 291, 109, 581, 34, 144, 38, 24, 51, 1145, 46, 273, 50, 260, 335, 63, 58, 360, 62, 141, 110, 513, 224, 1404, 74, 140, 294, 189, 82, 224, 86, 344, 105, 2410, 94, 417, 98, 176, 497, 56, 106, 76, 60, 189, 1385, 3952, 100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
A v-palindrome in base n is a number k that is not palindromic in base n, but for which A338038(k) = A338038(reverse(k) in base n).
|
|
LINKS
|
|
|
EXAMPLE
|
|
|
MATHEMATICA
|
s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; a[b_] := Module[{k = b+1, r}, While[!(!Divisible[k, b] && k != (r = IntegerReverse[k, b]) && s[k] == s[IntegerReverse[k, b]]), k++]; k]; Array[a, 100, 2] (* Amiram Eldar, Nov 24 2021 *)
|
|
PROG
|
(PARI) f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038
isok(m, b) = my(r=fromdigits(Vecrev(digits(m, b)), b)); (m % b) && (m != r) && (f(r) == f(m));
a(n) = my(k=1); while (!isok(k, n), k++); k;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|