login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349532
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - 4 * x).
2
1, 1, 7, 52, 407, 3329, 28232, 246552, 2204895, 20103027, 186223399, 1748009560, 16591329652, 158975004204, 1535725632552, 14940742412112, 146259921123407, 1439658075118967, 14240062489572485, 141469058343614452, 1410975387252602527, 14122900638031585153
OFFSET
0,3
COMMENTS
In general, if k >= 0 and g.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - k*x), then a(n) ~ (4*k + 27)^(n + 1/2) / (3 * sqrt(Pi) * n^(3/2) * 4^(n+1)). - Vaclav Kotesovec, Nov 25 2021
FORMULA
a(0) = a(1) = 1; a(n) = 4 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(3*k,k) * 4^(n-k) / (2*k+1).
a(n) = 4^(n-1)*F([4/3, 5/3, 1-n], [2, 5/2], -3^3/2^4), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 21 2021
a(n) ~ 43^(n + 1/2) / (3 * sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Nov 25 2021
MATHEMATICA
nmax = 21; A[_] = 0; Do[A[x_] = 1 + x A[x]^3/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = 4 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
Table[Sum[Binomial[n - 1, k - 1] Binomial[3 k, k] 4^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 21 2021
STATUS
approved