login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A349444(n) + A349445(n).
4

%I #10 Nov 21 2021 01:19:53

%S 2,0,0,1,0,-2,0,1,1,-4,0,-1,0,-6,4,1,0,-5,0,-2,6,-10,0,-1,4,-12,5,-3,

%T 0,-4,0,1,10,-16,12,-2,0,-18,12,-2,0,-6,0,-5,14,-22,0,-1,9,-16,16,-6,

%U 0,-13,20,-3,18,-28,0,0,0,-30,21,1,24,-10,0,-8,22,-12,0,-2,0,-36,24,-9,30,-12,0,-2,19,-40,0,0,32

%N a(n) = A349444(n) + A349445(n).

%H Antti Karttunen, <a href="/A349446/b349446.txt">Table of n, a(n) for n = 1..20000</a>

%F a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A349444(d) * A349445(n/d). [As the sequences are Dirichlet inverses of each other]

%t s[n_] := MoebiusMu[n] - If[OddQ[n], 0, MoebiusMu[n/2]]; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, s[#]*k[n/#] + IntegerExponent[2*#, 2]*kinv[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *)

%o (PARI) A349446(n) = (A349444(n)+A349445(n)); \\ Needs also code from A349444 and A349445.

%Y Cf. A349444, A349445.

%Y Cf. also A349433.

%K sign

%O 1,1

%A _Antti Karttunen_, Nov 18 2021