Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 25 2021 20:30:06
%S 1,0,0,0,0,-1,5,-8,0,6,3,-2,0,-19,5,4,4,-20,19,-22,-6,15,-3,8,0,0,-16,
%T -16,18,-24,40,-70,-9,24,-21,8,50,-55,-8,24,-6,31,15,-58,-20,17,31,
%U -92,-2,-70,37,24,0,20,49,18,-6,-26,13,-33,15,-62,-158,-20,22,-15,49,-130,67,48,49,-58,29,-112,-4,60,-73,-16
%N Dirichlet convolution of A064216 with the Dirichlet inverse of its inverse permutation.
%C Dirichlet convolution of A064216 with A323893, which is the Dirichlet inverse of A048673. Therefore, convolving A048673 with this sequence gives A064216.
%C Note how for n = 1 .. 35, a(n) = -A349398(n).
%H Antti Karttunen, <a href="/A349397/b349397.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = Sum_{d|n} A064216(n/d) * A323893(d).
%o (PARI)
%o A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
%o A064216(n) = { my(f = factor(n+n-1)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o memoA323893 = Map();
%o A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(d<n,A048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
%o A349397(n) = sumdiv(n,d,A064216(n/d)*A323893(d));
%Y Cf. A003961, A048673, A064216, A064989, A323893, A349398 (Dirichlet inverse), A349399 (sum with it), A349384.
%Y Cf. also pairs A349376, A349377 and A349613, A349614 for similar constructions.
%K sign
%O 1,7
%A _Antti Karttunen_, Nov 19 2021