login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A342001 ({arithmetic derivative of n}/A003557(n)) with A055615 (Dirichlet inverse of n).
5

%I #9 Nov 21 2021 01:18:14

%S 0,1,1,0,1,0,1,-1,-1,0,1,-2,1,0,0,-2,1,-6,1,-2,0,0,1,-2,-3,0,-3,-2,1,

%T 0,1,-3,0,0,0,2,1,0,0,-2,1,0,1,-2,-6,0,1,-2,-5,-20,0,-2,1,-6,0,-2,0,0,

%U 1,0,1,0,-6,-4,0,0,1,-2,0,0,1,8,1,0,-20,-2,0,0,1,-2,-5,0,1,0,0,0,0,-2,1,0,0,-2,0,0,0

%N Dirichlet convolution of A342001 ({arithmetic derivative of n}/A003557(n)) with A055615 (Dirichlet inverse of n).

%C Dirichlet convolution of this sequence with A000010 (Euler phi) is A346485.

%H Antti Karttunen, <a href="/A349396/b349396.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = Sum_{d|n} A055615(d) * A342001(n/d).

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003557(n) = (n/factorback(factorint(n)[, 1]));

%o A342001(n) = (A003415(n) / A003557(n));

%o A055615(n) = (n*moebius(n));

%o A349396(n) = sumdiv(n,d,A342001(n/d)*A055615(d));

%Y Cf. A003415, A003557, A055615, A342001.

%Y Cf. A346485, A347234, A347235, A347395, A347954, A347959, A347961, A347963 for Dirichlet convolutions of A342001 with other sequences.

%Y Cf. also A349394.

%K sign

%O 1,12

%A _Antti Karttunen_, Nov 18 2021