login
A348965
Exponential harmonic numbers of type 2 that are not squarefree.
5
12, 18, 36, 40, 60, 75, 84, 90, 120, 126, 132, 135, 150, 156, 180, 198, 204, 208, 228, 234, 252, 270, 276, 280, 306, 342, 348, 360, 372, 396, 414, 420, 440, 444, 450, 468, 492, 516, 520, 522, 525, 540, 544, 558, 564, 588, 600, 612, 624, 630, 636, 660, 666, 675
OFFSET
1,1
COMMENTS
Sándor (2006) proved that all squarefree numbers are exponential harmonic numbers of type 2.
LINKS
József Sándor, On exponentially harmonic numbers, Scientia Magna, Vol. 2, No. 3 (2006), pp. 44-47.
EXAMPLE
12 = 2^2 * 3 is a term since it is not squarefree, its exponential divisors are 6 and 12, and their harmonic mean, 8, is an integer.
MATHEMATICA
f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^(e-#) &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[1000], ! SquareFreeQ[#] && ehQ[#] &]
CROSSREFS
Intersection of A013929 and A348964.
Sequence in context: A079479 A293692 A349027 * A162694 A230354 A349180
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 05 2021
STATUS
approved