login
A293692
Numbers z such that x^2 + y^7 = z^2 for positive integers x and y.
2
12, 18, 33, 54, 126, 160, 272, 366, 375, 520, 531, 540, 594, 630, 756, 825, 945, 1028, 1044, 1094, 1350, 1372, 1506, 1536, 1575, 1980, 2050, 2219, 2304, 2619, 2940, 3250, 3500, 3645, 3906, 3925, 4097, 4224, 4390, 4625, 5500, 5844, 5988, 6048, 6192, 6283, 6422
OFFSET
1,1
COMMENTS
Let i, j and k are nonegtive integers, n is positive integer. As [(n^)^(7i+1) * (2n+1)^(7j + 3) * (n + 1)^(7k)]^2 + [n)^(2i) * (2n + 1)^(2j + 1) * (n + 1)^(2k)]^7 = [n^(7i) * (2n + 1)^(7j + 3) * (n+1)^(7k+1)]^2, so that number of form n^(7i) * (2n + 1)^(7j + 3) * (n+1)^(7k+1) is a term in sequence.
When (x, y, z) is solution of x^2 + y^3 = z^2 (i.e., z = A070745(n)), (x^(7i+1) * y^(7j + 2) * z^(7k)]^2, x^(2i) * y^(2j + 1) * z^(2k), x^(7i) * y^(7j + 2) * z^(7k+1) is solution of x^2 + y^7 = z^2.
When (x, y, z) is solution of x^2 + y^5 = z^2, (i.e., z = A293284(n)), x^(7i+1) * y^(7j + 1) * z^(7k), x^(2i) * y^(2j + 1) * z^(2k), x^(7i) * y^(7j + 1) * z^(7k+1) is solution of x^2 + y^7 = z^2.
When (x, y, z) is solution of x^2 + y^7 = z^2, (x^(7i+1) * y^(7j + 2) * z^(7k), x^(7i) * y^(j + 1) * z^(7k), x^(7i) * y^(7j +2) * z^(7k)) is also.
EXAMPLE
4^2 + 2^7 = 12^2, 12 is a term.
31^2 + 2^7 = 33^2, 33 is a term.
MATHEMATICA
z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/7)]^7, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[6550], z]
CROSSREFS
KEYWORD
nonn
AUTHOR
XU Pingya, Oct 14 2017
STATUS
approved