login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n is prime, a(n) = n, else a(n) = a(n-pi(n)), n >= 2; where pi is the prime counting function A000720.
3

%I #42 Nov 10 2021 01:16:27

%S 2,3,2,5,3,7,2,5,3,11,7,13,2,5,3,17,11,19,7,13,2,23,5,3,17,11,19,29,7,

%T 31,13,2,23,5,3,37,17,11,19,41,29,43,7,31,13,47,2,23,5,3,37,53,17,11,

%U 19,41,29,59,43,61,7,31,13,47,2,67,23,5,3,71,37,73,53,17,11

%N If n is prime, a(n) = n, else a(n) = a(n-pi(n)), n >= 2; where pi is the prime counting function A000720.

%C A fractal sequence in which every term is prime. The proper subsequence a(k), for composite numbers k = 4,6,8,9... is identical to the original, and the records subsequence is A000040.

%C Regarding this sequence as an irregular triangle T(m,j) where the rows m terminate with 2 exhibits row length A338237(m). In such rows m, we have a permutation of the least A338237(m) primes. - _Michael De Vlieger_, Nov 04 2021

%H Michael De Vlieger, <a href="/A348907/b348907.txt">Table of n, a(n) for n = 2..10238</a> (as an irregular triangle, rows 1 <= n <= 35 flattened).

%H Michael De Vlieger, <a href="/A348907/a348907.png">Log-log scatterplot of a(n)</a>, for n=1..2^16.

%e 2 is prime so a(2) = 2.

%e 3 is prime so a(3) = 3.

%e 4 is not prime so a(4) = a(4-pi(4)) = 2.

%e 5 is prime so a(5) = 5.

%e 6 is composite so a(6) = a(6-pi(6)) = 3.

%e From _Michael De Vlieger_, Nov 04 2021: (Start)

%e Table showing pi(a(n)) for the first rows m of this sequence seen as an irregular triangle T(m,j). "New" primes introduced for prime n are shown in parentheses:

%e m\j 1 2 3 4 5 6 7 8 9 10 11 A338237(m)

%e ------------------------------------------------------------

%e 1: (1) 1

%e 2: (2) 1 2

%e 3: (3) 2 (4) 1 4

%e 4: 3 2 (5) 4 (6) 1 6

%e 5: 3 2 (7) 5 (8) 4 6 1 8

%e 6: (9) 3 2 7 5 8 (10) 4 (11) 6 1 11

%e ... (End)

%t a[n_]:=If[PrimeQ@n,n,a[n-PrimePi@n]];Array[a,75,2] (* _Giorgos Kalogeropoulos_, Nov 03 2021 *)

%o (PARI) a(n) = if (isprime(n), n, a(n-primepi(n))); \\ _Michel Marcus_, Nov 03 2021

%o (Python)

%o from sympy import isprime

%o def aupton(nn):

%o alst, primepi = [], 0

%o for n in range(2, nn+1):

%o if isprime(n): an, primepi = n, primepi + 1

%o else: an = alst[n - primepi - 2]

%o alst.append(an)

%o return alst

%o print(aupton(76)) # _Michael S. Branicky_, Nov 04 2021

%Y Cf. A000040, A002808, A000720, A010051, A338237.

%K nonn,look

%O 2,1

%A _David James Sycamore_, Nov 03 2021

%E More terms from _Michel Marcus_, Nov 03 2021