login
A348907
If n is prime, a(n) = n, else a(n) = a(n-pi(n)), n >= 2; where pi is the prime counting function A000720.
3
2, 3, 2, 5, 3, 7, 2, 5, 3, 11, 7, 13, 2, 5, 3, 17, 11, 19, 7, 13, 2, 23, 5, 3, 17, 11, 19, 29, 7, 31, 13, 2, 23, 5, 3, 37, 17, 11, 19, 41, 29, 43, 7, 31, 13, 47, 2, 23, 5, 3, 37, 53, 17, 11, 19, 41, 29, 59, 43, 61, 7, 31, 13, 47, 2, 67, 23, 5, 3, 71, 37, 73, 53, 17, 11
OFFSET
2,1
COMMENTS
A fractal sequence in which every term is prime. The proper subsequence a(k), for composite numbers k = 4,6,8,9... is identical to the original, and the records subsequence is A000040.
Regarding this sequence as an irregular triangle T(m,j) where the rows m terminate with 2 exhibits row length A338237(m). In such rows m, we have a permutation of the least A338237(m) primes. - Michael De Vlieger, Nov 04 2021
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..10238 (as an irregular triangle, rows 1 <= n <= 35 flattened).
Michael De Vlieger, Log-log scatterplot of a(n), for n=1..2^16.
EXAMPLE
2 is prime so a(2) = 2.
3 is prime so a(3) = 3.
4 is not prime so a(4) = a(4-pi(4)) = 2.
5 is prime so a(5) = 5.
6 is composite so a(6) = a(6-pi(6)) = 3.
From Michael De Vlieger, Nov 04 2021: (Start)
Table showing pi(a(n)) for the first rows m of this sequence seen as an irregular triangle T(m,j). "New" primes introduced for prime n are shown in parentheses:
m\j 1 2 3 4 5 6 7 8 9 10 11 A338237(m)
------------------------------------------------------------
1: (1) 1
2: (2) 1 2
3: (3) 2 (4) 1 4
4: 3 2 (5) 4 (6) 1 6
5: 3 2 (7) 5 (8) 4 6 1 8
6: (9) 3 2 7 5 8 (10) 4 (11) 6 1 11
... (End)
MATHEMATICA
a[n_]:=If[PrimeQ@n, n, a[n-PrimePi@n]]; Array[a, 75, 2] (* Giorgos Kalogeropoulos, Nov 03 2021 *)
PROG
(PARI) a(n) = if (isprime(n), n, a(n-primepi(n))); \\ Michel Marcus, Nov 03 2021
(Python)
from sympy import isprime
def aupton(nn):
alst, primepi = [], 0
for n in range(2, nn+1):
if isprime(n): an, primepi = n, primepi + 1
else: an = alst[n - primepi - 2]
alst.append(an)
return alst
print(aupton(76)) # Michael S. Branicky, Nov 04 2021
CROSSREFS
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 03 2021
STATUS
approved