login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348535
Sum of all the parts in the partitions of n into 3 parts that divide the product of the other two parts within each partition.
0
0, 0, 3, 2, 7, 9, 16, 18, 30, 28, 49, 44, 71, 69, 93, 96, 135, 124, 177, 146, 195, 205, 279, 242, 297, 312, 362, 332, 469, 383, 539, 492, 557, 594, 627, 570, 794, 761, 834, 758, 1022, 836, 1137, 984, 1066, 1171, 1412, 1188, 1409, 1330, 1499, 1454, 1839, 1555, 1749, 1622
OFFSET
1,3
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * c(i*(n-i-j)/j) + i * c(j*(n-i-j)/i) + (n-i-j) * c(i*j/(n-i-j)) ), where c(n) = 1 - ceiling(n) + floor(n).
EXAMPLE
a(9) = 30; The partitions of 9 into 3 parts are (1,1,7), (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4) and (3,3,3). The sums of the parts that divide the product of the other two, within each partition in the list above are, respectively: (1+1) + (1+2) + (1) + (1+4+4) + (2+2) + (2) + (3+3+3) which equals 30.
MATHEMATICA
Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[j*c[i*(# - i - j)/j] + i*c[j*(# - i - j)/i] + (# - i - j)*c[i*j/(# - i - j)], {i, j, Floor[(# - j)/2]}], {j, Floor[#/3]}] &, 56] ] (* Michael De Vlieger, Oct 21 2021 *)
CROSSREFS
Cf. A348531.
Sequence in context: A351904 A351903 A359973 * A018891 A034423 A193859
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 21 2021
STATUS
approved