OFFSET
1,3
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * c(i*(n-i-j)/j) + i * c(j*(n-i-j)/i) + (n-i-j) * c(i*j/(n-i-j)) ), where c(n) = 1 - ceiling(n) + floor(n).
EXAMPLE
a(9) = 30; The partitions of 9 into 3 parts are (1,1,7), (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4) and (3,3,3). The sums of the parts that divide the product of the other two, within each partition in the list above are, respectively: (1+1) + (1+2) + (1) + (1+4+4) + (2+2) + (2) + (3+3+3) which equals 30.
MATHEMATICA
Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[j*c[i*(# - i - j)/j] + i*c[j*(# - i - j)/i] + (# - i - j)*c[i*j/(# - i - j)], {i, j, Floor[(# - j)/2]}], {j, Floor[#/3]}] &, 56] ] (* Michael De Vlieger, Oct 21 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 21 2021
STATUS
approved