login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348329
Numbers k such that k' = k'', where ' is the arithmetic derivative.
1
0, 1, 4, 27, 3125, 823543, 1647082, 2238771
OFFSET
1,3
COMMENTS
For n > 2, a(n) is such that a(n)' = p^p for some prime p. So A051674 is a subsequence. - David A. Corneth, Oct 13 2021
If p > 2 and p^p-2 are both primes (i.e., p is an odd prime term of A100408), then 2*(p^p-2) is a term. Terms of this type are 1647082 and 3956839311320627178247954, corresponding to p = 7 and 19 respectively. - Amiram Eldar, Oct 13 2021
FORMULA
Numbers k such that A003415(k) = A068346(k).
MAPLE
isA348329 := proc(n)
local d ;
d := A003415(n) ;
if A003415(d) = d then
true ;
else
false;
end if;
end proc:
for n from 0 do
if isA348329(n) then
print(n) ;
end if;
end do: # R. J. Mathar, Oct 19 2021
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 2.5*10^6], d[#] == d[d[#]] &] (* Amiram Eldar, Oct 13 2021 *)
PROG
(PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(k) = ad(k) == ad(ad(k)); \\ Michel Marcus, Oct 18 2021
(Python)
from sympy import factorint
from itertools import count, islice
def ad(n): return 0 if n<2 else sum(n*e//p for p, e in factorint(n).items())
def agen(): yield from (k for k in count(0) if (adk:=ad(k)) == ad(adk))
print(list(islice(agen(), 5))) # Michael S. Branicky, Oct 12 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Wesley Ivan Hurt, Oct 12 2021
STATUS
approved