login
A348191
Triangular array read by rows: T(n,k) is the number of cubic n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.
1
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 6, 3, 6, 1, 0, 24, 30, 15, 10, 1, 0, 0, 234, 105, 45, 15, 1, 0, 720, 504, 1134, 315, 105, 21, 1, 0, 5040, 7020, 5292, 3969, 840, 210, 28, 1, 0, 0, 89424, 48572, 29484, 11529, 2016, 378, 36, 1, 0, 362880, 299376, 724140, 275120, 118125, 29673, 4410, 630, 45, 1
OFFSET
0,9
COMMENTS
A permutation p in S_n is a cube if there exists q in S_n with q^3=p.
LINKS
EXAMPLE
The four cubic 3-permutations are (1, 2, 3) with three cycles (fixed points) and (1, 3, 2), (3, 2, 1) & (2, 1, 3), each with two cycles (a fixed point & a transposition).
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 0, 3, 1;
[4] 0, 6, 3, 6, 1;
[5] 0, 24, 30, 15, 10, 1;
[6] 0, 0, 234, 105, 45, 15, 1;
[7] 0, 720, 504, 1134, 315, 105, 21, 1;
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(j, igcd(i, 3))<>0, 0, x^j*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 30 2021
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0,
Sum[If[Mod[j, GCD[i, 3]] != 0, 0, x^j*(i-1)!^j*multinomial[n,
Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]], {j, 0, n/i}]]]];
T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, |A194770|.
Row sums give A103619.
Cf. A246948.
Sequence in context: A071417 A096653 A308639 * A213668 A256595 A004590
KEYWORD
nonn,tabl
AUTHOR
Steven Finch, Nov 27 2021
EXTENSIONS
More terms from Alois P. Heinz, Nov 30 2021
STATUS
approved