login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348169
Positive integers which can be represented as A*(x^2 + y^2 + z^2) = B*(x*y + x*z + y*z) with positive integers x, y, z, A, B and gcd(A,B)=1.
1
3, 12, 18, 27, 30, 42, 48, 72, 75, 77, 98, 108, 120, 147, 154, 162, 168, 192, 243, 255, 260, 264, 270, 272, 273, 285, 288, 297, 300, 308, 338, 363, 378, 392, 432, 450, 462, 480, 490, 494, 507, 510, 513, 588, 616, 630, 648, 672, 675, 693, 702, 714, 722, 750, 754, 768, 798
OFFSET
1,1
COMMENTS
The sequence represents a generalization of cases A033428 (k=1), A347960 (k=2), A347969 (k=5) with all possible k given by A331605. Instead of integer k, it utilizes the ratio B/A.
LINKS
Alexander Kritov, Source code
EXAMPLE
a(6)=42: the quintuple (x,y,z) A,B is 1,2,4 (2,3) because 42 = 2*(1^2 + 2^2 + 4^2) = 3*(1*4 + 1*2 + 2*4).
a(n) (x,y,z) A, B
3 (1,1,1) 1, 1
12 (2,2,2) 1, 1
18 (1,1,4) 1, 2
27 (3,3,3) 1, 1
30 (1,1,2) 5, 6
42 (1,2,4) 2, 3
48 (4,4,4) 1, 1
72 (1,2,2) 8, 9 [also (2,2,8) 1, 2]
75 (5,5,5) 1, 1
77 (1,1,3) 7, 11
98 (1,4,9) 1, 2
108 (6,6,6) 1, 1
120 (2,2,4) 5, 6
147 (7,7,7) 1, 1
154 (1,2,3) 11, 14
162 (3,3,12) 1, 2
168 (2,4,8) 2, 3
192 (8,8,8) 1, 1
243 (9,9,9) 1, 1
255 (1,1,7) 5, 17
260 (2,5,6) 4, 5
264 (1,4,4) 8, 11
270 (2,5,5) 5, 6
272 (2,2,3) 16, 17
288 (4,4,2) 8, 9 [also (4,4,16) 1, 2]
PROG
(C) /* See links */
(Python)
from itertools import islice, count
from math import gcd
from sympy import divisors, integer_nthroot
def A348169(): # generator of terms
for n in count(1):
for d in divisors(n, generator=False):
x, x2 = 1, 1
while 3*x2 <= d:
y, y2 = x, x2
z2 = d-x2-y2
while z2 >= y2:
z, w = integer_nthroot(z2, 2)
if w:
A = n//d
B, u = divmod(n, x*(y+z)+y*z)
if u == 0 and gcd(A, B) == 1:
yield n
break
y += 1
y2 += 2*y-1
z2 -= 2*y-1
else:
x += 1
x2 += 2*x-1
continue
break
else:
continue
break
A348169_list = list(islice(A348169(), 57)) # Chai Wah Wu, Nov 26 2021
CROSSREFS
The sequence contains A033428 (A=B=1), A347969 (B=2*A), A347960 (B=5*A).
Sequence in context: A239052 A063229 A061564 * A342785 A166038 A052637
KEYWORD
nonn,changed
AUTHOR
Alexander Kritov, Oct 04 2021
STATUS
approved