OFFSET
0,2
COMMENTS
T(m, n) is the number of saturated Cp^m*q^n-transfer systems where Cp^m*q^n is the cyclic group of order p^m*q^n, for m, n >= 0, p and q primes. See Hafeez et al. link page 1.
LINKS
Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, El. J. Comb., 28 (2021), P4.18. The array seems to appear in Table 6.
Usman Hafeez, Peter Marcus, Kyle Ormsby and Angélica Osorno, Saturated and linear isometric transfer systems for cyclic groups of order p^m*q^n, arXiv:2109.08210 [math.AT], 2021.
FORMULA
T(n,k) = T(k,n).
T(n,k) = Sum_{j=0..min(n,k)} (j!*(j+2)!/2)*Stirling2(n+2,j+2;2)*Stirling2(k+2,j+2;2), n,k >= 0, where Stirling2(n,k;2) are the 2-Stirling numbers of the second kind A143494. - Fabián Pereyra, Jan 08 2022
EXAMPLE
Array begins:
1 2 4 8 16 32 ...
2 7 23 73 227 697 ...
4 23 115 533 2359 10133 ...
8 73 533 3451 20753 118843 ...
16 227 2359 20753 164731 1220657 ...
32 697 10133 118843 1220657 11467387 ...
...
PROG
(PARI) T(n, k) = sum(j=2, n+2, (-1)^(n-j)*stirling(n+1, j-1, 2)*j!*j^k/2);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Sep 20 2021
STATUS
approved