login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347940
Array T(n, k) = Sum_{j=2..n+2} (-1)^(n-j)*Stirling2(n+1, j-1)*j!*j^k/2, for n and k >= 0, read by antidiagonals.
0
1, 2, 2, 4, 7, 4, 8, 23, 23, 8, 16, 73, 115, 73, 16, 32, 227, 533, 533, 227, 32, 64, 697, 2359, 3451, 2359, 697, 64, 128, 2123, 10133, 20753, 20753, 10133, 2123, 128, 256, 6433, 42655, 118843, 164731, 118843, 42655, 6433, 256, 512, 19427, 177053, 657833, 1220657, 1220657, 657833, 177053, 19427, 512
OFFSET
0,2
COMMENTS
T(m, n) is the number of saturated Cp^m*q^n-transfer systems where Cp^m*q^n is the cyclic group of order p^m*q^n, for m, n >= 0, p and q primes. See Hafeez et al. link page 1.
LINKS
Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, El. J. Comb., 28 (2021), P4.18. The array seems to appear in Table 6.
Usman Hafeez, Peter Marcus, Kyle Ormsby and Angélica Osorno, Saturated and linear isometric transfer systems for cyclic groups of order p^m*q^n, arXiv:2109.08210 [math.AT], 2021.
FORMULA
T(n,k) = T(k,n).
T(n,k) = Sum_{j=0..min(n,k)} (j!*(j+2)!/2)*Stirling2(n+2,j+2;2)*Stirling2(k+2,j+2;2), n,k >= 0, where Stirling2(n,k;2) are the 2-Stirling numbers of the second kind A143494. - Fabián Pereyra, Jan 08 2022
EXAMPLE
Array begins:
1 2 4 8 16 32 ...
2 7 23 73 227 697 ...
4 23 115 533 2359 10133 ...
8 73 533 3451 20753 118843 ...
16 227 2359 20753 164731 1220657 ...
32 697 10133 118843 1220657 11467387 ...
...
PROG
(PARI) T(n, k) = sum(j=2, n+2, (-1)^(n-j)*stirling(n+1, j-1, 2)*j!*j^k/2);
CROSSREFS
Columns k=0-1 gives A000079, A083313(n+1).
Main diagonal gives A220181(n+1).
Cf. A008277 (Stirling2), A143494.
Sequence in context: A300937 A300881 A301491 * A208269 A184761 A270227
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Sep 20 2021
STATUS
approved