login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301491
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 7, 4, 8, 18, 18, 8, 16, 50, 52, 50, 16, 32, 138, 148, 148, 138, 32, 64, 383, 441, 599, 441, 383, 64, 128, 1063, 1372, 2354, 2354, 1372, 1063, 128, 256, 2951, 4326, 9415, 15124, 9415, 4326, 2951, 256, 512, 8193, 13641, 38558, 93753, 93753, 38558, 13641
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4......8.......16........32..........64..........128
...2....7....18.....50......138.......383........1063.........2951
...4...18....52....148......441......1372........4326........13641
...8...50...148....599.....2354......9415.......38558.......158994
..16..138...441...2354....15124.....93753......594953......3838256
..32..383..1372...9415....93753....903707.....8479276.....81180752
..64.1063..4326..38558...594953...8479276...116648010...1642511178
.128.2951.13641.158994..3838256..81180752..1642511178..34593556316
.256.8193.42741.657238.24838061.782053062.23269383762.732289348979
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1),
k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3) +a(n-4) -2*a(n-5) -a(n-6),
k=3: [order 24] for n>25,
k=4: [order 89] for n>91.
EXAMPLE
Some solutions for n=5, k=4
..0..1..0..0. .0..1..1..1. .0..0..1..1. .0..0..1..0. .0..1..1..0
..1..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..0. .0..1..0..0
..0..1..1..1. .0..1..0..1. .1..0..1..0. .1..1..0..0. .0..0..0..0
..1..1..0..0. .0..1..0..0. .1..0..1..0. .0..1..0..0. .1..0..0..0
..0..1..1..0. .0..1..1..0. .1..0..0..1. .1..0..1..1. .1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A280598.
Sequence in context: A300498 A300937 A300881 * A347940 A208269 A184761
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 22 2018
STATUS
approved