login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347929
a(n) = 2^(-1 + (n + n mod 2)/2)*abs(permanent(M_n)) where M_n is the n X n matrix M_n(j, k) = cos(Pi*j*k/n) if n >= 1 and a(0) = 1.
2
1, 1, 1, 2, 0, 6, 12, 12, 96, 108, 240, 380, 0, 28428, 8176, 16200, 387072, 2817324, 6065280, 4604796, 56832000, 14574168, 2092107072, 13994428360, 8725045248, 162749055000, 1304167707648, 3291435901044, 17899142381568, 107056050266172
OFFSET
0,4
LINKS
Zhi-Wei Sun, Fedor Petrov, A surprising identity, discussion in MathOverflow, Jan 17 2019.
Zhi-Wei Sun, On some determinants involving the tangent function, arXiv:1901.04837 [math.NT], 2021.
EXAMPLE
a(6) = 16*cos^4(Pi/8) + 8*cos^2(Pi/8) - 64*cos^2(Pi*3/8)*cos^2(Pi/8) + 8*cos^2(Pi*3/8) + 16*cos^4(Pi*3/8).
PROG
(SageMath)
def A347929(n):
if n == 0: return 1
RF = RealField(100) # adjust precision if needed
M = matrix(RF, n, n, lambda j, k: cos(j * k * pi / n))
c = 2^(-1 + (n + n % 2) // 2)
return abs(round(c*M.permanent()))
print([A347929(n) for n in range(12)])
(PARI)
p(n) = matpermanent(matrix(n, n, j, k, cos((Pi*j*k)/n)));
A347929(n) = abs(round(2^(-1 + (n + n %2)/2)*p(n)));
{for(n = 0, 12, print(A347929(n)))}
CROSSREFS
Cf. A347281.
Sequence in context: A350462 A357367 A110667 * A129877 A371913 A307581
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 19 2021
STATUS
approved