|
|
A347845
|
|
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_8)^n.
|
|
1
|
|
|
1, 10, 804, 518376, 2674194448, 110368339035808, 36440751353074277952, 96254339565438079064819328, 2033964285682509941820879401890048, 343839935881726495233403720783311789640192
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{L partition of n} A347490(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
|
|
EXAMPLE
|
a(3) = 804 = 1 * 1 + 73 * 2 + 657 * 1, counting:
the unrefined chain 0 < (F_8)^3;
73 chains 0 < V < (F_8)^3, with dim(V) = 1; another
73 chains 0 < V < (F_8)^3, with dim(V) = 2; and
657 chains 0 < V_1 < V_2 < (F_8)^3.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|