login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347833
Number of solutions to the congruence (x+1)*x + 4 == 0 (mod A347831(n)).
2
1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 2, 2
OFFSET
1,2
COMMENTS
A347832 gives the representatives of these residue classes.
FORMULA
a(n) equals the length of row n of A347832(n).
PROG
(PARI) isok(m) = {my(f=factor(m)); for (k=1, #f~, my(p=f[k, 1]); if ((p==3) || (p==5), if (f[k, 2] > 1, return (0)), if (kronecker(p, 15) != 1, return(0))); ); return (1); } \\ A347831
f(n) = sum(x=0, n-1, Mod(x*(x+1), n) == -4);
lista(nn) = apply(f, select(isok, [1..nn])); \\ Michel Marcus, Oct 23 2021
CROSSREFS
Sequence in context: A298642 A243404 A219181 * A260341 A109969 A085035
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 15 2021
STATUS
approved