login
A347801
Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^2.
3
0, 0, 1, 0, 0, 8, 0, 0, 16, 0, 18, 0, 0, 72, 0, 0, 0, 32, 81, 0, 128, 0, 0, 0, 0, 288, 50, 0, 0, 200, 0, 0, 256, 0, 450, 0, 0, 72, 0, 0, 288, 800, 0, 0, 0, 648, 0, 0, 0, 0, 723, 0, 1152, 392, 0, 0, 0, 0, 882, 0, 0, 1800, 0, 0, 0, 1696, 0, 0, 512, 0, 0, 0, 1296, 1152, 2450, 0, 0, 0, 0, 0, 2048, 0, 162, 0, 0, 4176, 0, 0, 0, 3200, 1458
OFFSET
0,6
LINKS
FORMULA
a(n) is sum of i^2 * j^2 for positive integers i,j such that i^2+j^2=n.
PROG
(PARI) a(n) = sum(i=1, n, sum(j=1, n, (i^2+j^2==n)*(i*j)^2));
(PARI) my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^2))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 14 2021
STATUS
approved