login
A347266
a(n) is the number whose binary representation is the concatenation of terms in the n-th row of A237048.
2
1, 1, 3, 2, 3, 5, 6, 4, 7, 9, 12, 10, 12, 9, 29, 16, 24, 22, 24, 17, 57, 36, 48, 40, 50, 36, 57, 65, 96, 92, 96, 64, 114, 72, 101, 161, 192, 144, 228, 136, 192, 178, 192, 129, 473, 288, 384, 320, 388, 304, 456, 258, 384, 353, 801, 520, 912, 576, 768, 676, 768, 576, 922, 512, 801, 1409
OFFSET
1,3
COMMENTS
The number of ones in the n-th row of A237048 equals A001227(n), the same as the number of ones in the binary representation of a(n).
The number of zeros in the n-th row of A237048 equals A238005(n), the same as the number of zeros in the binary representation of a(n).
The number of terms in the n-th row of A237048 equals A003056(n), the same as the number of digits in the binary representation of a(n).
LINKS
Michael De Vlieger, Bitmap of the first 2^10 terms, showing 1s in black, 12X horizontal exaggeration.
Michael De Vlieger, Bitmap of the first 2^12 terms, showing 1s in black, rotated 90 degrees counterclockwise. [Click "magnify" to see the graph more clearly.]
EXAMPLE
The 15th row of the triangle A237048 is [1, 1, 1, 0, 1] and the concatenation of these terms is 11101 which can be interpreted as a binary number whose decimal value is 29, so a(15) = 29.
MATHEMATICA
Table[FromDigits[Boole[Divisible[n - If[OddQ[#], 0, Quotient[#, 2]], #]] & /@ Range[Quotient[Sqrt[8 n + 1] - 1, 2]], 2], {n, 66}] (* Jan Mangaldan, Sep 13 2021 *)
PROG
(PARI) t(n, k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
a(n) = fromdigits(vector(floor((sqrt(1+8*n)-1)/2), k, t(n, k)), 2); \\ Michel Marcus, Sep 12 2021
CROSSREFS
Cf. A003056, A007088, A001227, A237048, A237593, A238005, A347765 (binary representation).
Sequence in context: A023605 A223542 A182003 * A050060 A247829 A351705
KEYWORD
nonn,base,look
AUTHOR
Omar E. Pol, Sep 06 2021
STATUS
approved