|
|
A347166
|
|
Decimal expansion of (gamma + log(2)) * Pi / 2.
|
|
0
|
|
|
1, 9, 9, 5, 4, 8, 1, 2, 9, 1, 3, 4, 7, 6, 0, 2, 8, 1, 5, 0, 5, 6, 9, 1, 1, 7, 1, 4, 7, 5, 4, 3, 2, 6, 9, 8, 3, 2, 2, 3, 1, 2, 3, 9, 4, 0, 8, 7, 0, 9, 4, 3, 5, 5, 1, 4, 8, 0, 9, 7, 1, 6, 6, 5, 6, 9, 5, 9, 0, 8, 8, 8, 9, 4, 0, 3, 3, 9, 2, 0, 1, 2, 5, 3, 7, 8, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Shamos has incorrect integral expression for this constant.
|
|
REFERENCES
|
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (1979), Eq. (4.421.1).
|
|
LINKS
|
|
|
FORMULA
|
Equals -Integral_{x=0..infinity} log(x) * sin(2*x) / x dx.
More generally, Integral_{x=0..infinity} log(x) * sin(k*x) / x dx = -(Pi/2) * (gamma+log(k)).
|
|
EXAMPLE
|
1.995481291347602815056911714754326983223123940...
|
|
MAPLE
|
|
|
MATHEMATICA
|
RealDigits[(EulerGamma + Log[2])*Pi/2, 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|