login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A152474(n,n).
3

%I #11 Apr 07 2022 03:28:22

%S 1,0,0,1,41,842,20520,477479,12482191,344597977,10325683780,

%T 329996493091,11307950123833,411428962250775,15890609817681079,

%U 648195555340597125,27864181100124570327,1258096888119566215689,59531788666265363070393,2944807922604446013781174

%N a(n) = A152474(n,n).

%H Alois P. Heinz, <a href="/A346981/b346981.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = A152474(n,n).

%p f:= proc(n) option remember; `if`(n<2, 1, f(n-1)*(q^n-1)/(q-1)) end:

%p b:= proc(n, i) option remember; simplify(`if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-i*j, i-1)/f(i)^j/j!, j=0..n/i))))

%p end:

%p a:= n-> coeff(simplify(n!*f(n)*b(n$2)), q, n):

%p seq(a(n), n=0..19);

%t f[n_] := f[n] = If[n < 2, 1, f[n - 1]*(q^n - 1)/(q - 1)];

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,

%t Sum[b[n - i*j, i - 1]/f[i]^j/j!, {j, 0, n/i}]]];

%t a[n_] := SeriesCoefficient[n!*f[n]*b[n, n], {q, 0, n}];

%t Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Apr 07 2022, after _Alois P. Heinz_ *)

%Y Main diagonal of A152474.

%Y Cf. A346980.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Aug 09 2021