login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152474
Triangle T(n,k) read by rows: Sum_{k=0..binomial(n,2)} T(n,k)*q^k = n!*Sum_{pi} faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.
3
1, 1, 3, 1, 13, 8, 8, 1, 73, 63, 89, 78, 41, 15, 1, 501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1, 4051, 5225, 9734, 13799, 18709, 20441, 20520, 18101, 14831, 10200, 5891, 3199, 1109, 314, 35, 1, 37633, 55656, 112370, 177457, 270746, 352969, 442897
OFFSET
0,3
COMMENTS
Sum_{k=0..binomial(n,2)} T(n,k)*exp(2*Pi*I*k/n)) = n!. - Vladeta Jovovic, Dec 05 2008
LINKS
FORMULA
From Paul D. Hanna, Dec 15 2008: (Start)
E.g.f.: A(x,q) = exp(e_q(x,q) - 1) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/(n!*faq(n,q)) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) and faq(n,q) = Product_{j=1..n} (q^j-1)/(q-1) with faq(0,q)=1.
Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = n!*A000110((n+1)/2), where A000110 is the Bell numbers. (End)
EXAMPLE
Triangle T(n,k) begins:
1;
1;
3, 1;
13, 8, 8, 1;
73, 63, 89, 78, 41, 15, 1;
501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1;
...
PROG
(PARI) {T(n, k)=local(e_q=sum(j=0, n, x^j/prod(i=1, j, (q^i-1)/(q-1)))+x*O(x^n)); n!*polcoeff(polcoeff(exp(e_q-1), n, x)*prod(j=1, n, (q^j-1)/(q-1)), k, q)} \\ Paul D. Hanna, Dec 15 2008
CROSSREFS
Cf. A000262 (first column), A105219(second column), A137341 (row sums), A152534.
T(n,n) gives A346981.
Sequence in context: A376863 A133176 A089435 * A088814 A088729 A270968
KEYWORD
nonn,tabf,easy
AUTHOR
Vladeta Jovovic, Dec 05 2008
EXTENSIONS
T(0,0)=1 prepended by Alois P. Heinz, Feb 04 2018
STATUS
approved