|
|
A346684
|
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*k,k) / (7*k + 1).
|
|
5
|
|
|
1, 0, 8, 84, 1156, 17122, 268262, 4370086, 73281938, 1256608767, 21933420953, 388400019583, 6960642974905, 126008367913375, 2300862338502425, 42326714610861679, 783717720798538121, 14594469249932149279, 273161824453612674593, 5135931850101477641707
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(m*k,k) / ((m-1)*k + 1) ~ m^(m*(n+1) + 1/2) / (sqrt(2*Pi) * (m^m + (m-1)^(m-1)) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..768
|
|
FORMULA
|
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^7 * A(x)^8.
a(n) ~ 2^(24*n + 25) / (17600759 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
|
|
MATHEMATICA
|
Table[Sum[(-1)^(n - k) Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^7 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(8*k, k)/(7*k + 1)); \\ Michel Marcus, Jul 29 2021
|
|
CROSSREFS
|
Cf. A007556, A032357, A188678, A346668, A346672.
Cf. A346680, A346681, A346682, A346683.
Sequence in context: A233835 A300993 A052659 * A350264 A113376 A205311
Adjacent sequences: A346681 A346682 A346683 * A346685 A346686 A346687
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Jul 29 2021
|
|
STATUS
|
approved
|
|
|
|