The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346684 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*k,k) / (7*k + 1). 5
 1, 0, 8, 84, 1156, 17122, 268262, 4370086, 73281938, 1256608767, 21933420953, 388400019583, 6960642974905, 126008367913375, 2300862338502425, 42326714610861679, 783717720798538121, 14594469249932149279, 273161824453612674593, 5135931850101477641707 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(m*k,k) / ((m-1)*k + 1) ~ m^(m*(n+1) + 1/2) / (sqrt(2*Pi) * (m^m + (m-1)^(m-1)) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..768 FORMULA G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^7 * A(x)^8. a(n) ~ 2^(24*n + 25) / (17600759 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021 MATHEMATICA Table[Sum[(-1)^(n - k) Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}] nmax = 19; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^7 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] PROG (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(8*k, k)/(7*k + 1)); \\ Michel Marcus, Jul 29 2021 CROSSREFS Cf. A007556, A032357, A188678, A346668, A346672. Cf. A346680, A346681, A346682, A346683. Sequence in context: A233835 A300993 A052659 * A350264 A113376 A205311 Adjacent sequences: A346681 A346682 A346683 * A346685 A346686 A346687 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jul 29 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 11:50 EDT 2024. Contains 373445 sequences. (Running on oeis4.)