login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346550
Expansion of Sum_{k>=0} k! * x^k * (1 + x)^(k+1).
1
1, 2, 4, 13, 54, 278, 1704, 12126, 98280, 893904, 9017280, 99918120, 1206500400, 15768729360, 221792780160, 3340515069360, 53641756586880, 914849722725120, 16514863528665600, 314599179867396480, 6306817346711481600, 132727279189258656000
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=floor(n/2)..n} k! * binomial(k+1,n-k).
a(n) = A240172(n-1) + A240172(n) for n > 0.
a(n) = (n-2) * a(n-1) + 2 * (n-1) * a(n-2) + (n-2) * a(n-3) for n > 2.
a(n) ~ exp(1) * n! * (1 - 1/n + 3/(2*n^2) - 2/(3*n^3) - 47/(24*n^4) + 49/(120*n^5) + 6421/(720*n^6) + ...). - Vaclav Kotesovec, Dec 11 2021
MATHEMATICA
a[n_] := Sum[k! * Binomial[k + 1, n - k], {k, Floor[n/2], n}]; Array[a, 22, 0] (* Amiram Eldar, Nov 30 2021 *)
PROG
(PARI) a(n) = sum(k=n\2, n, k!*binomial(k+1, n-k));
(PARI) a(n) = if(n<3, 2^n, (n-2)*a(n-1)+2*(n-1)*a(n-2)+(n-2)*a(n-3));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1+x)^(k+1)))
CROSSREFS
Sequence in context: A030939 A030886 A030810 * A058135 A030968 A030862
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 30 2021
STATUS
approved