login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Möbius transform of A342001, where A342001(n) = A003415(n)/A003557(n).
9

%I #22 Mar 04 2023 05:08:34

%S 0,1,1,1,1,3,1,1,1,5,1,2,1,7,6,1,1,1,1,4,8,11,1,2,1,13,1,6,1,14,1,1,

%T 12,17,10,0,1,19,14,4,1,20,1,10,4,23,1,2,1,1,18,12,1,1,14,6,20,29,1,8,

%U 1,31,6,1,16,32,1,16,24,34,1,0,1,37,2,18,16,38,1,4,1,41,1,12,20,43,30,10,1,4,18,22,32,47

%N Möbius transform of A342001, where A342001(n) = A003415(n)/A003557(n).

%C Conjecture 1: After the initial zero, the positions of other zeros is given by A036785.

%C Conjecture 2: No negative terms. Checked up to n = 2^24.

%H Antti Karttunen, <a href="/A346485/b346485.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A346485/a346485.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = Sum_{d|n} A008683(n/d) * A342001(d).

%F Dirichlet g.f.: Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - _Sebastian Karlsson_, May 08 2022

%F Sum_{k=1..n} a(k) ~ c * A065464 * n^2 / 2, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - _Vaclav Kotesovec_, Mar 04 2023

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003557(n) = (n/factorback(factorint(n)[, 1]));

%o A342001(n) = (A003415(n) / A003557(n));

%o A346485(n) = sumdiv(n,d,moebius(n/d)*A342001(d));

%Y Cf. A003415, A003557, A008683, A036785, A342001, A347232 [= a(A276086(n))].

%Y Cf. also A300251, A300717, A347234, A347235, A347395.

%K nonn

%O 1,6

%A _Antti Karttunen_, Aug 26 2021