login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is twice the coefficient of 1 in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).
3

%I #9 Jul 22 2021 07:02:06

%S 2,4,1,10,16,2,6,20,4,3,30,8,8,2,340,1,5,394,48,10,10,4,16,5,22,3040,

%T 2,46,70,12,12,74,50,6,64,26,6964,20,1,48670,96,4,2,100,3,7,10,178,30,

%U 302,198,1060,8,39,126,16,16,130,97684,8,25,502,6960,2,2136,86,4,340,9,106,160,1,18,164,5,9,20810

%N a(n) is twice the coefficient of 1 in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2).

%H S. R. Finch, <a href="https://web.archive.org/web/20160511035657/http://www.people.fas.harvard.edu/~sfinch/csolve/clss.pdf">Class number theory</a>

%H Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FundamentalUnit.html">Fundamental Unit</a>.

%t nonSquares = Select[Range[72], !IntegerQ[Sqrt[#]]& ]; 2*NumberFieldFundamentalUnits[Sqrt[#]][[1, 2, 1]] & /@ nonSquares (* _Jean-François Alcover_, Nov 09 2012 *)

%o (PARI) for(n=1,30,if(!issquare(n),print1(abs(2*polcoeff(lift(bnfinit(x^2-n).fu[1]),0)),","))) /* _Ralf Stephan_, Sep 18 2013; updated by _Michel Marcus_, Jun 25 2020 */

%Y Cf. A000037, A346420, A048941, A048942.

%K nonn

%O 1,1

%A _Sean A. Irvine_